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Abstract

The Accelerated Failure Time model presents a way to easily describe survival regression data.

It is assumed, that each observed unit ages internally faster or slower, depending on the covariate

values. To use the model properly, we want to check if observed data fit the model assumptions.

In present work we introduce a goodness-of-fit statistics based on modern martingale theory. On

simulated data we try to estimate empirical properties of the test for various situations.

1 Introduction

Let us observe survival data representing time which passes from beginning of an experiment until
some pre-defined failure. We suppose that the data may be incomplete in a way that some objects
may be removed from the observation prior to reaching the failure, which we call right censoring. We
want to model the dependence of the time to failure on available covariates. The Accelerated Failure
Time model (AFT, Buckley&James 1979) presents an alternative to the most widely used and well
described Cox proportional hazard model (Cox, 1972). In the AFT model, we assume the log-linear
dependence

log T ∗
i = −ZT

i β0 + ǫi,

where T ∗
i , i = 1, ..., n, are the real failure times, Zi = (Zi1, ..., Zip)

T covariates, β0 the vector of real
parameters and ǫi (iid). Denote Ci the censoring times, Ti = min(T ∗

i , Ci) the times of the end of
observation and ∆i = I(T ∗

i ≤ Ci) noncensoring indicators. Suppose T ∗
i and Ci independent for all i.

We observe independent data (Ti,∆i, Zi), i = 1, ..., n.

We assume T ∗
i to be continuous. Denote Fi(t) = P (T ∗

i ≤ t) their distribution function, fi(t) density,
Si(t) = 1 − Fi(t) the survival function, αi(t) = limhց0 P (t ≤ T ∗

i < t + h|T ∗
i ≥ t)/h = fi(t)/Si(t) the

hazard function and Ai(t) =
∫ t

0
αi(s)ds the cumulative hazard. For the AFT model, we have

αi(t) = α0(exp(Z
T
i β0)t)exp(Z

T
i β0).

We assume that the baseline hazard α0(t) is completely unknown and is estimated nonparametrically.

If we want to work with time-dependent covariates, the generalization of Lin&Ying (1995) may be
used, in which the failure times are taken as

eǫi = hi(T
∗
i , β0) =

∫ T∗

i

0

eZ
T

i
(s)β0ds.

The data may be represented as counting processes, denoteNi(t) = I(Ti ≤ t,∆i = 1), Yi(t) = I(t ≤ Ti),

intensities λi(t) = Yi(t)αi(t) and cumulative intensities Λi(t) =
∫ t

0
λi(s)ds. All functions and processes

are on an interval t ∈ [0, τ ], where τ < ∞ is some point beyond the last observed survival time. It can
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be shown, that under the model assumptions, Λi(t) are the compensators of corresponding processes
Ni(t) with respect to Ft = σ {Ni(s), Yi(s),Xi, 0 ≤ s ≤ t, i = 1, ..., n} (Fleming & Harrington, 1991).
Therefore Mi(t) := Ni(t) − Λi(t) are Ft-martingales (Doob-Meier decomposition). The log-likelihood
for the data can be then rewritten with the help of the counting processes as

l(t) =

n∑

i=1

∫ t

0

(log(αi(s))dNi(s)− Yi(s)αi(s)ds) ,

and by taking the derivative with respect to model parameters we get the score process U(t,β). For
estimation of the parameters we solve the equations U(β) ≡ U(τ,β) = 0.

We present a goodness-of-fit statistics for the AFT model based on martingale approach and resampling
techniques for time-invariant covariates and for an important subclass of the time-varying covariates.
On simulated examples we study the empirical properties of the test in various settings.

2 The test statistics - time-invariant covariates

We use similar notation as Lin et al (1998), using time-transformed counting processes. Let

N∗
i (t, β) = Ni(te

−ZT

i
β), Y ∗

i (t, β) = Yi(te
−ZT

i
β), i = 1, ..., n.

S∗
0 (t, β) =

n∑

i=1

Y ∗
i (t, β), S∗

1 (t, β) =
n∑

i=1

Y ∗
i (t, β)Zi,

E∗(t, β) =
S∗
1 (t, β)

S∗
0 (t, β)

, Â0(t) =

∫ t

0

J(s)

S∗
0 (t, β)

dN∗
• (s, β),

for J(s) = I(S∗
0 (t, β) > 0). Â0(t) is the well-known Nelson-Aalen estimator of A0(t). With some

algebra, the score process may be rewritten as

U(t, β) =

n∑

i=1

∫ t

0

Q(s, β)(Zi − E∗(s, β))dN∗
i (s, β),

with Q(s, β) = (
sα′

0
(s)

α0(s)
+1). The estimated parameters β̂ are taken as those minimizing ‖U(β)‖, because

the score process is not continuous in β. It can be shown, that with Q1(s, β) ≡ 1 orQ2(s, β) =
1
n
S∗
0 (s, β)

instead of Q(s, β), the estimated parameters are consistent and n
1

2 (β̂ − β0) converge to a zero mean
Gaussian process. In further examples, we use simply Q(s, β) ≡ 1. Denote the martingale residuals

M∗
i (t, β) = N∗

i (t, β)−
∫ t

0

Y ∗
i (s, β)dA0(s, β)

and their empirical counterparts

M̂∗
i (t, β) = N∗

i (t, β)−
∫ t

0

Y ∗
i (s, β)dÂ0(s, β).

With some algebra, it can be shown that

U(t, β0) =

n∑

i=1

∫ t

0

Q(s, β0)(Zi − E∗(s, β0))dM
∗
i (s, β0).
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The proposed test statistics is

W (t) = n− 1

2

n∑

i=1

f(Zi)I(Zi ≤ z)M̂∗
i (t, β̂),

where f is a bounded function and z is a vector of constants. Denote fi := f(Zi)I(Zi ≤ z). We want
to find a statistics that is easy to replicate and has the same limiting distribution. Denote

Sf (t, β) =
∑

i

fiY
∗
i (s, β), E∗

f (t, β) =
S∗
f (t, β)

S∗
0 (t, β)

fN (t) =
1

n

∑

i

∆ifif0(t)tZi, fY (t) =
1

n

∑

i

fig0(t)tZi,

where f0(t) and g0(t) are the baseline densities of eǫi and Tie
ZT

i
β0 , respectively. Let f̂N and f̂Y be

their empirical counterparts with kernel estimates f̂0(t) and ĝ0(t). Take Gi, i = 1, ..., n as iid standard
normals, let

UG
f (t, β) =

n∑

i=1

∫ t

0

Q(s, β)(fi − E∗
f (s, β))dM̂

∗
i (s, β)Gi,

UG(t, β) =

n∑

i=1

∫ t

0

Q(s, β)(Zi − E∗(s, β))dM̂∗
i (s, β)Gi.

Take β̂∗ as the solution of the equation

U(β) = UG(β̂).

We prove in the appendix, that W (t) has asymptotically the same distribution as

Ŵ (t) =
1√
n
UG
f (t, β̂) +

√
n

(
f̂N (t) +

∫ t

0

f̂Y (s)dÂ0(s, β̂)

)T

(β̂ − β̂∗)

− 1√
n

∫ t

0

Sf (s, β̂)d(Â0(s, β̂)− Â0(s, β̂
∗)).

We can compute W (t) for the studied data set and replicate Ŵ (t) many times. For testing we may use

supt∈[0,τ ]|W (t)| or supt∈[0,τ ]

∣∣ W (t)√
v̂arW (t)

∣∣

with a suitable variance estimator. If the statistics computed from W (t) exceeds (1 − α)% of the
statistics from the replicated Ŵ (t), we reject the hypothesis that the data follow the AFT model.

3 The test statistics - one jump in covariates

We can also work with time-dependent covariates Zi(t). Lin & Ying (1995) proposed representing the
failure times via following time transformation:

eǫi = hi(T
∗
i , β0) =

∫ T∗

i

0

eZ
T

i
(s)β0ds,

where ǫi are (iid). Take the transformed counting processes as

N∗
i (t, β) = ∆iI(hi(Ti, β) ≤ t), Y ∗

i (t, β) = I(hi(Ti, β) ≥ t),
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the processes S∗
0 , S

∗
1 , E

∗, Â0, M̂i(t, β) and U(β, t) are then computed similarly as with fixed covariates.
Constructing the test is not entirely similar, because the weights fi = f(Xi)I(Xi ≤ x) cannot be used.

The simplest case would be, if the covariate represents an additional influence which is added in given
time si for each observed individual,

Zi(t) =

{
1 t > si
0 t ≤ si.

This means that at the time si the observed individual starts to age faster or slower. We easily show,
that

hi(t, β) = min(t, si) + eβ(t− si)
+.

For the statistics W (t) = 1√
n

∑
fiM̂i(t), the weights can be chosen as fi = I(si ≤ z) for some z, i.e.

z = median(si) etc. Or we can simply sum all the residuals (fi ≡ 1).

With this weigths and transformed counting processes we compute Sf , U
G
f and UG in the same way

as before. The resampled process is constructed as before, only with

f̂N (t) =
1

n

∑

i

∆ifif̂0(t)(t− si)
+, f̂Y (t) =

1

n

∑

i

fiĝ0(t)(t− si)
+

and it has the same limiting distribution as W (t).
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4 Simulation study

We try using the proposed test in various situations. We want to study the empirical power of the test
against certain alternatives for various sample sizes. Each time we consider noncensored data and a data
with about one quarter of the observations randomly and independently censored. As test statstics,

we took sup|W (t)| and sup| W (t)√
v̂arW (t)

| with the variance estimated form the resampled processes. Both

statistics were computed over [0, τ ] and over four separated subintervals divided by quartiles of Tie
Xiβ̂

or hi(Ti, β̂). The hypothesis that the AFT model holds is rejected on the significancy level of 5%, if the
observed statistics exceed 95% of the replicated statistics. In the case with the division into quartiles,
we reject the model whenever we would reject in one of the quartiles. Each time, 500 samples were
generated and for each sample, Ŵ (t) was generated 200×. To examine the empirical power, we generate
data from different models and observe the proportion of rightfully rejected samples. To see if the tests
hold the significance level, we generate from the AFT model itself and observe the proportion of
wrongfully rejected samples.

4.1 Constant covariates

First we generated data from the Cox model αi(t) = eZiβα0(t) with lognormal baseline hazard LN(5,1).
The covariates Zi were taken as values from N(3, 1) with β = 1. For the weights fi = f(Zi)I(Zi ≤ z)
we took f(Zi) = Zi and f ≡ 1 and z = median(Zi) and z = 10%quantile(Zi). Samples of 1000
observations were tested to determine which weights suit this alternative best (Tab.1). It is clear

Test [0, τ ] quartiles

Statistics sup|W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣

Censoring NC C NC C NC C NC C
x median 0 0 0 0.042 0 0.014 0 0.048
x 10%q 0.102 0.040 0.132 0.148 0.292 0.270 0.316 0.252
1 median 0.002 0 0.140 0.126 0.024 0.016 0.144 0.140
1 10%q 0.364 0.090 0.406 0.120 0.582 0.264 0.614 0.226

Tab. 1: The proportion of rightfully rejected samples from the Cox model for various weights fi

that the weights fi = I(Zi ≤ 10%q.Z) yield the best empirical power against the alternative of the
Cox model. We now use these weights for testing samples of various sizes (Tab.2). The results below
indicate, that with increasing sample size the empirical power gets higher, however, for a reasonable
power a great number of observations is still needed. Standardising with the deviation process and
dividing into quartiles adds some power. With censoring, the power diminishes greatly.

Test [0, τ ] quartiles

Statistics sup|W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣

Censoring NC C NC C NC C NC C
100 0.010 0.006 0.022 0.012 0.048 0.054 0.052 0.048
200 0.018 0.032 0.024 0.024 0.062 0.076 0.076 0.074
500 0.174 0.022 0.146 0.066 0.308 0.106 0.340 0.124
1000 0.364 0.090 0.406 0.120 0.582 0.264 0.614 0.226
2000 0.816 0.160 0.874 0.476 0.982 0.614 0.982 0.602

Tab. 2: The empirical power against the Cox model for various sample sizes

5



When we generated data from the AFT model with the same baseline distribution, covariates and β,
the empirical level of significance was in almost every case below 5%, sometimes even smaller than 1%.

4.2 Time-varying covariates

Consider data with a single jump in one covariate, Zi(t) = I(t > si). First, we generated data from the
Cox model αi(t) = exp(Zi(s)β)α0(t) with lognormal baseline distribution LN(5, 1) and β = 1. The
times to jump si were generated as (iid) e−1 + LN(4, 1). We applied the test of the AFT model with
weights fi = I(si ≤ median(sj)). For the results see Tab.3. Without standardising with the estimated

standard deviation process
√
v̂arW (t) or dividing into quartiles, the empirical power is surprisigly

zero. Observing the nonstandardised statistics in the quartiles separately yields better results, the
power increases with the sample size. With the standardising, the power is even higher, and for each
sample size stays approximately the same regardless of dividing into quartiles or censoring.

Test [0, τ ] quartiles

Statistics sup|W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣

Censoring NC C NC C NC C NC C
100 0 0 0.082 0.068 0.012 0.020 0.102 0.084
200 0 0 0.442 0.444 0.026 0.046 0.472 0.492
500 0 0 0.984 0.992 0.168 0.216 0.988 0.992
1000 0 0 1 1 0.680 0.682 1 1
2000 0 0 1 1 1 1 1 1

Tab. 3: The empirical power against the Cox model with a time-varying covariate

When we generated data from the AFT model with the same setting instead, the empirical level of
significance was almost every time below 5%.

Next, we generated data from the AFT model with one confounding covariate, with T ∗
i satisfying

eǫi =
∫ T∗

i

0
eZi(t)β1+Xiβ2dt with Zi(t) same as above, Xi independent, generated from N(3, 1) and

β1 = β2 = 1. We test whether the model holds if we try fitting it using just the covariate Zi. For
results, see Tab.4. For some reasons, using the statistics plain without standardising or dividing into
quartiles, the power gets lower with more observations. However, if we standardise by the standard
deviation process or observe the statistics in the quartiles separately, the empirical power is in some
cases even better than in the previous setting. Also censoring does not diminish the power much.

Test [0, τ ] quartiles

Statistics sup|W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣ sup |W (t)| sup
∣∣ W (t)√

v̂arW (t)

∣∣

Censoring NC C NC C NC C NC C
100 0.210 0.238 0.270 0.224 0.438 0.374 0.452 0.366
200 0.110 0.386 0.458 0.460 0.682 0.630 0.678 0.626
500 0 0.100 0.852 0.776 0.928 0.904 0.932 0.920
1000 0 0 0.992 0.984 0.996 0.992 0.996 0.996
2000 0 0 1 1 1 1 1 1

Tab. 4: The empirical power against the AFT model with an ommited covariate
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5 Appendix

We now prove the asymptotic equivalency of W (t) and Ŵ (t). First we work with fixed covariates and
then we generalize the proof also for time-dependent covariates.

5.1 Preliminaries

We will treat the covariates Zi as random variables. Suppose, that:
(i) Zi are bounded.
(ii) (N∗

i , C
∗
i , Zi) are (iid), with C∗

i being time-transformed censoring times.
(iii) Q, E∗, E∗

f and 1
n
Sf have bounded variation and converge almost surely to continuous functions

q, e, ef and sf , respectively.
(iv) C∗

i have a uniformly bounded density.
(v) fN (t) and fY (t) have bounded variation and converge almost surely to f0

N (t) and f0
Y (t), respectively.

Lin et al (1998) shows, that under i-iv for dn → 0:

sup|β−β0|<dn
‖U(β)− U(β0) + nA(β − β0)‖/(n

1

2 + n‖β − β0‖) = oP (1), (1)

sup|β−β0|<dn
‖n 1

2 (Â0(β)− Â0(β0))− bT (t)n
1

2 (β − β0)‖ = oP (1), (2)

where A =
∫ τ

0
q(t)E[Y ∗

1 (t, β0)(Z1 − e(t))⊗2]d(α0(t)t) and b(t) = −
∫ t

0
e(s)d(α0(s)s).

5.2 Convergence for sums of N∗

i
and Y

∗

i

First, we show in a similar way, that under (i)-(v):

sup|β−β0|<dn
‖n− 1

2

∑
fi(N

∗
i (t, β)−N∗

i (t, β0))− fT
N (t)n

1

2 (β − β0)‖ = oP (1), (3)

sup|β−β0|<dn
‖n− 1

2

∑
fi(Y

∗
i (t, β)− Y ∗

i (t, β0)) + fT
Y (t)n

1

2 (β − β0)‖ = oP (1), (4)

where fN and fY are from above.

Assume first, that β < β0 We have

n− 1

2

∑
fi(N

∗
i (t, β)−N∗

i (t, β0)) = n− 1

2

∑
fi∆i[I(T

∗
i e

ZT

i
β ≤ t)− I(T ∗

i e
ZT

i
β0 ≤ t)]

= n− 1

2

∑
fi∆i[I(T

∗
i ≤ te−ZT

i
β)− I(T ∗

i ≤ te−ZT

i
β0)]

= n− 1

2

∑
fi∆iI[te

−ZT

i
β0 < T ∗

i ≤ te−ZT

i
β ]

= n− 1

2

∑
fi∆iI[t < T ∗

i e
−ZT

i
β0 ≤ teZ

T

i
(β0−β)]

From Lemma 1 of Lin&Ying (1993) follows, that

sup|β−β0|<dn
‖n− 1

2

∑
fi(N

∗
i (t, β)−N∗

i (t, β0))− n− 1

2E
∑

fi(N
∗
i (t, β)−N∗

i (t, β0))| = oP (1)

and analogically for Y ∗. It suffices to compute the expectation of the sum of indicators. Because

T ∗
i e

ZT

i
β0 are (iid), we have

EI[t < T ∗
i e

ZT

i
β0 ≤ teZ

T

i
(β0−β)] = P (t < T ∗

i e
ZT

i
β0 ≤ teZ

T

i
(β0−β))

= F0(te
ZT

i
(β0−β))− F0(t) = f0(t)t(e

ZT

i
(β0−β) − 1) + oP (1)

= f0(t)tZ
T
i (β − β0) + oP (1).

7



We used the Taylor expansion for β → β0 twice. For β > β0 we get the same result. Conditioning on
∆i, we have

n− 1

2

∑
fi(N

∗
i (t, β)−N∗

i (t, β0)) = (
1

n

∑
fi∆if0(t)tZi)

T (β − β0)
√
n+ oP (1)

= n
1

2 fT
N (t)(β − β0) + oP (1).

Similarly for Y ∗
i , we have

n− 1

2

∑
fi(Y

∗
i (t, β)− Y ∗

i (t, β0)) = n− 1

2

∑
fi[I(Ti ≥ te−ZT

i
β)− I(Ti ≥ te−ZT

i
β0)]

= n− 1

2

∑
fiI[t > min(T ∗

i e
ZT

i
β0 , Cie

ZT

i
β0) ≥ teZ

T

i
(β0−β)],

if β > β0. We assumed, that also Cie
ZT

i
β0 are (iid) and therefore min(T ∗

i , Ci)e
ZT

i
β0 are also (iid) with

a density g0. Computing the expectation and using the Taylor expansion, we get

n− 1

2

∑
fi(Y

∗
i (t, β)− Y ∗

i (t, β0)) = (
1

n

∑
fig0(t)tZi)

T (β0 − β)
√
n+ oP (1)

= n
1

2 fT
Y (t)(β0 − β) + oP (1).

5.3 The convergence of the statistics W (t) and Ŵ (t)

We show the asymptotical equivalence by proving the convergence of finite-dimensional distributions
and tightness, with the help of multivariate functional central limit theorem given by Pollard (1990).

W (t) =
1√
n

∑

i

fiM̂
∗
i (t, β̂)

=
1√
n

∑

i

fiM
∗
i (t, β0) +

1√
n

∑

i

fi(M̂
∗
i (t, β̂)−M∗

i (t, β0))

=
1√
n

∑

i

fiM
∗
i (t, β0) +

1√
n

∑

i

fi(N
∗
i (t, β̂)−N∗

i (t, β0))

− 1√
n

∑

i

fi

∫ t

0

(
Y ∗
i (s, β̂)dÂ0(s, β̂)− Y ∗

i (s, β0)dA0(s)
)

Applying (3) and adding and substracting Y ∗
i (s, β̂)dA0(s) and Y ∗

i (s, β0)dA0(s, β̂) we get

W (t) =
1√
n

∑

i

fiM
∗
i (t, β0) + n

1

2 fT
N (t)(β̂ − β0)

− 1√
n

∑

i

fi

∫ t

0

Y ∗
i (s, β0)d

(
Â0(s, β̂)−A0(s)

)

− 1√
n

∑

i

fi

∫ t

0

(Y ∗
i (s, β̂)− Y ∗

i (s, β0))dA0(s) + oP (1).

With the help of (1) and (2) we have

n
1

2 (Â0(s, β̂)−A0(s)) = n
1

2 (Â0(s, β0)−A0(s)) + bT (t)n
1

2 (β̂ − β0) + oP (1)

= n
1

2

∑

i

∫ t

0

dM∗
i (s, β0)

S∗
0 (s, β0)

+ bT (t)n− 1

2A−1U(β0) + oP (1).
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We apply (4) on the last term of W (t) and then (1) for n
1

2 (β̂ − β0) = n− 1

2A−1U(β0) + oP (1):

W (t) =
1√
n

∑

i

fiM
∗
i (t, β0) + n

1

2

(
fN (t) +

∫ t

0

fY (s)dA0(s)

)T

(β̂ − β0)

− 1√
n

∑

i

∫ t

0

Sf (s, β0)

S∗
0 (s, β0)

dM∗
i (s, β0)− n− 1

2

∫ t

0

Sf (s, β0)db
T (s)A−1U(β0) + oP (1)

=
1√
n

∑∫ t

0

(fi − E∗
f (s, β0))dM

∗
i (s, β0)

+
1√
n

(
fN (t) +

∫ t

0

fY (s)dA0(s)−
∫ t

0

1

n
Sf (s, β0)db(s)

)T

A−1U(β0) + oP (1).

The limiting process can be found similarly as in Lin et al (1998). Write

UM (t) = n− 1

2

∑
M∗

i (t, β0), UMZ(t) = n− 1

2

∑
ZiM

∗
i (t, β0), UMF (t) = n− 1

2

∑
fiM

∗
i (t, β0).

For fixed t, each of the processes is a sum of iid zero-mean terms and therefore the finite-dimensional
convergence of (UM , UMZ , UMF ) follows from multivariate central limit theorem. For each t, M∗

i (t, β0),
ZiM

∗
i (t, β0) and fiM

∗
i (t, β0) can be written as sums and products of monotone functions, and therefore

are manageable in sense of Pollard (1990), p.38. It then follows from the functional central limit theorem
(Pollard, 1990, p.53) that (UM , UMZ , UMF ) is tight and converges weakly to a zero-mean Gaussian
process, say (WM ,WZM ,WMF ). By the Skorokhod-Dudley-Wichura theorem (Shorack & Wellner,
1986, p.47), an equivalent process (UM , UMZ , UMF ) in an alternative probability space can be found,
in which the convergence becomes almost sure. Becausee Q(t, β0), E∗(t, β0), E∗

f (t, β0),
1
n
Sf (t, β0),

fN (t) and fY (t) have bounded variation and converge almost surely to q, e, ef , sf , f
0
N (t) and f0

Y (t),
respectively, then W (t) converges in D[0, τ ] to

∫ t

0

dWMF (s)−
∫ t

0

ef (s, β0)dWM (s) + cT (t)

∫ τ

0

q(s)dWMZ − cT (t)

∫ τ

0

q(s)e(s, β0)dWM ,

where c(t) = f0
N (t) +

∫ t

0
f0
Y (s)dA0(s)−

∫ t

0
sf (s, β0)db(s), which has zero mean and covariance function

σ(t1, t2) =E
([∫ t1

0

(f1 − ef (s, β0))dM
∗
1 (s, β0) + cT (t1)A

−1

∫ τ

0

q(s)[Z1 − e(s, β0)]dM
∗
1 (s, β0)

]

×
[∫ t2

0

(f1 − ef (s, β0))dM
∗
1 (s, β0) + cT (t2)A

−1

∫ τ

0

q(s)[Z1 − e(s, β0)]dM
∗
1 (s, β0)

])
.

For Ŵ (t), we have

Ŵ (t) =
1√
n
UG
f (t, β̂) +

√
n

(
f̂N (t) +

∫ t

0

f̂Y (s)dÂ0(s, β̂)

)T

(β̂ − β̂∗)

− 1√
n

∫ t

0

Sf (s, β̂)d(Â0(s, β̂)− Â0(s, β̂
∗))

=
1√
n

∑∫ t

0

(fi − E∗
f (s, β̂))dM̂

∗
i (s, β̂)Gi +

1√
n

(
f̂N (t) +

∫ t

0

f̂Y (s)dÂ0(s, β̂)

)T

(β̂ − β̂∗)

−
√
n

∫ t

0

1

n
Sf (s, β̂)db(s)(β̂ − β̂∗) + oP (1)

=
1√
n

∑∫ t

0

(fi − E∗
f (s, β̂))dM̂

∗
i (s, β̂)Gi

+
1√
n

(
f̂N (t) +

∫ t

0

f̂Y (s)dÂ0(s, β̂)−
∫ t

0

1

n
Sf (s, β̂)db(s)

)T

A−1U(β̂∗) + oP (1).
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We used (1) for

n
1

2 (β̂ − β̂∗) = n− 1

2A−1U(β̂∗) + oP (1)

and (2) for

n
1

2 (Â0(t, β̂)− Â0(t, β̂
∗)) = bT (t)n

1

2 (β̂ − β̂∗) + oP (1).

The score process satisfies U(β̂∗) = UG(β̂) and therefore we see that Ŵ (t) consists of the same parts as

W (t), with β0,M
∗
i (t, β0), fN (t) and fY (t) replaced with β̂, GiM̂

∗
i (t, β̂), f̂N (t) and f̂Y (t). The resampled

martingale residuals GiM
∗
i (t, β̂) have the same distribution as their theoretical counterparts, and the

kernel estimates of f0 and g0 converge to the real densities. Therefore Ŵ (t) has the same limiting
finite-dimensional distributions as W (t). Tightness follows also by the same arguments as for W (t).

5.4 Time-varying covariates

For the case with the one-jump covariate, the results (1) and (2) of Lin et al (1998) hold with assump-
tions slightly changed to accomodate Zi(t) as processes. The results (3) and (4) for the sums of the
processes N∗

i and Y ∗
i hold also, with

fN (t) =
1

n

∑

i

∆ifif0(t)(t− si)
+, fY (t) =

1

n

∑

i

fig0(t)(t− si)
+.

We take

hi(t, β) = min(t, si) + eβ(t− si)
+, h−1

i (t, β) = min(t, si) + e−β(t− si)
+.

Assume first, that β < β0 We have

n− 1

2

∑
fi(N

∗
i (t, β)−N∗

i (t, β0)) = n− 1

2

∑
fi∆i[I(hi(T

∗
i , β) ≤ t)− I(hi(T

∗
i , β0) ≤ t)]

= n− 1

2

∑
fi∆i[I(T

∗
i ≤ h−1

i (t, β))− I(T ∗
i ≤ h−1

i (t, β0))]

= n− 1

2

∑
fi∆iI[h

−1
i (t, β0) < T ∗

i ≤ h−1
i (t, β)]

= n− 1

2

∑
fi∆iI[t < hi(T

∗
i , β0) ≤ hi(h

−1
i (t, β), β0)]

Again, it suffices to compute the expectation of the sum of indicators. Because hi(T
∗
i , β0) are (iid) and

hi(h
−1
i (t, β), β0) = min(t, si) + eβ0−β(t− si)

+, we have

EI[t < hi(T
∗
i , β0) ≤ hi(h

−1
i (t, β̂), β0)] = F0(t < hi(T

∗
i , β0) ≤ hi(h

−1
i (t, β̂), β0))

= F0(min(t, si) + eβ0−β(t− si)
+)− F0(t).

For t ≤ si the term is zero, for t > si using Taylor expansion for β → β0 we get

= F0(si + eβ0−β(t− si))− F0(t) = f0(t)(si + eβ0−β(t− si)− t) + oP (1)

= f0(t)(t− si)(e
β0−β − 1) + oP (1) = f0(t)(t− si)(β − β0) + oP (1).

For β > β0 we get the same result. Merging the two cases and adding into the sum we get fN (t) as
shown above. In similar way we obtain also fY (t).
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